
6th International Scientific Conference ITEMA 2022 – Proceedings
DOI: https://doi.org/10.31410/ITEMA.2022.41

https://orcid.org/0000-0002-5459-9886

Comparing Genetic Algorithm
and Variable Neighborhood Search Method
for Solving Job Shop Problem
Jana Vugdelija1

Keywords:
Job Shop;
Scheduling problem;
Genetic algorithm;
Variable neighborhood
search;
Heuristics

Abstract: Job Shop scheduling problem is one of the most complex and
researched problems in the field of production planning. In this paper, two
methods for solving Job Shop scheduling problem are presented and com-
pared. The genetic algorithm and variable neighborhood search method
were chosen and implemented in software for solving Job Shop problem.
The paper first briefly presents Job Shop scheduling problem and then ex-
plains the development of solving software and implementation of selected
solution methods. The results of using implemented genetic algorithm and
variable neighborhood search method are presented on test instances with
various dimensions. Solutions obtained using these two methods were put
in comparison and analyzed, as well as compared with the optimal or best-
known solutions in the literature.

Creative Commons Non
Commercial CC BY-NC: This

article is distributed under the terms of
the Creative Commons Attribution-Non-
Commercial 4.0 License (https://creative-
commons.org/licenses/by-nc/4.0/) which
permits non-commercial use, reproduc-
tion and distribution of the work without
further permission.

1. INTRODUCTION

Job Shop scheduling problem is one of the most complex and researched problems in the field
of production planning. Different heuristic methods are mainly used to solve it, and in this

paper variable neighborhood search method and genetic algorithm were chosen. Among oth-
er frequently used methods for solving the Job Shop problem are the ant colony algorithm (Sai-
di-Mehrabad et al., 2015), particle swarm optimization (Nouiri et al., 2018), artificial bee colony
algorithm (Li et al., 2014), as well as many hybrid methods (Huang & Liao, 2008), (Li & Gao,
2016). The paper consists of five sections. After the introductory part, Section 2 briefly presents
the Job Shop problem. In Section 3, genetic algorithm and variable neighborhood search meth-
od used to solve the Job Shop scheduling problem are described. In Section 4, the results of ex-
periments on test instances are presented. Finally, concluding remarks are given in Section 5.

2. JOB SHOP PROBLEM

Job Shop scheduling problem represents the problem of determining the order in which products
will be processed on machines, where each product can follow a different processing sequence, i.e.
have a different order of operations (Pinedo, 2008). This problem belongs to the group of NP-hard
problems (Garey et al., 1976). Although Job Shop may be seen as a production planning problem
by setting, the concepts used to solve this problem can be applied in many other areas. For exam-
ple, in the field of traffic and logistics when routing and scheduling trains or airplanes as shown
by Liu and Kozan (2009), or when assigning staff and planning shifts, creating a class or lecture
schedules, etc. In this paper, the basic form of the Job Shop problem (Zhang et al., 2019) is consid-
ered. Let there be n jobs, J1, J2,...Jn, that needs to be processed on m machines M1, M2,...Mm, and
let each job have a known (different) sequence of processing operations that it needs to follow, with
1 University of Belgrade, Faculty of Organisational Sciences, Jove Ilića 154, Belgrade, Serbia

Received: November 21, 2022
Accepted: January 24, 2023

Published: June 12, 2023

42

6th International Scientific Conference ITEMA 2022
Conference Proceedings

each job being processed on each machine at most once. The time needed to process each prod-
uct on each machine is also known, given in the form of the matrix tij for i=1, 2,...n and j=1, 2,...m.
Each machine can process only one product at any time and each product can only be processed
on one machine at any time. All jobs are of equal priority, available from the same initial moment,
and it is not possible to interrupt the started processing of any product on any machine. It is neces-
sary to find the sequence of execution of jobs on each machine in such a way that the completion
time of the last processing operation on the last product is as short as possible while respecting all
the aforementioned restrictions. Minimization of the total time needed to process all products and
minimization of idle time on machines and others can be used as an objective function, while in
this paper makespan is being considered, as previously stated.

3. GENETIC ALGORITHM AND VARIABLE NEIGHBORHOOD METHOD
FOR THE JOB SHOP PROBLEM

Before implementing the selected solution methods in the software, it is necessary to determine
how the solution will be represented. In the developed software, the solution is presented as a
structure that contains two attributes: the schedule of execution of jobs on the machines and the
time required to process all products, i.e. the objective function. The job execution schedule is
written in the form of a sequence of n×m members (where n is the number of jobs and m is the
number of machines). Array elements represent processing operations and have values from 1 to
n, thereby indicating the job to which the operation belongs. The ordinal number of occurrence
of value i in the sequence indicates the ordinal number of the i-th job operation and thus the ma-
chine on which that operation is executed. This way of recording the schedule is presented by
Sevkli and Azdin (2006). The solution algorithms are presented in more detail below. Both al-
gorithms are implemented in the programming language C# (Visual Studio environment).

3.1. Genetic Algorithm

Genetic algorithm is a heuristic first presented by Holland (1992) and is based on the idea to sim-
ulate biological process of evolution in order to find the best possible solution to various optimiza-
tion problems. The very idea of applying simulated evolutionary processes in order to create a ma-
chine that learns was first mentioned by Turing (1950). The analogy between genetic algorithms
and Darwin’s theory of evolution is reflected in the fact that through generations the most desirable
traits of individuals are favored, meaning that individuals that are better adapted, or in the case of
optimization problems, have a better value of the objective function, have a higher probability of
transferring their genetic material to the next generations. The methods used in genetic algorithms
that simulate evolutionary processes are called genetic operators and refer to selection, crossover
and mutation processes (Mattfeld, 2013). The genetic algorithm (GA) implemented to solve the Job
Shop problem can be represented by the following functions:
• Creation of the initial population
• Input data: number of individuals in population, n (number of jobs), m (number of ma-

chines), order in which jobs are processed on machines, duration of processing each job on
each machine

 1. Repeat until number of individuals in the population is reached
 a. Generate a random permutation of numbers from 1 to n
 b. Create a sequence of one initial solution by repeating the generated permutation

m times in a row
 c. Calculate the time needed to implement the obtained schedule

43

Comparing Genetic Algorithm and Variable Neighborhood Search Method for Solving Job Shop Problem

 2. Sort the individuals in the population into a non-decreasing sequence according to
the value of the objective function

• Output data: Initial population ie. an array with a given number of individuals
• Crossover
• Input data: two parent entities, the order in which the jobs are processed on the machines,

the processing time of each job on each machine
 1. Randomly select a segment of size 50% to 60% from the schedule of the first parent
 2. Rewrite the selected segment, in the same positions, in the child’s schedule
 3. Make a copy of the other parent’s schedule
 4. For all elements of the selected segment
 a. Remove the first occurrence of an element from a copy of the other parent’s

schedule
 5. In the remaining positions in the child’s schedule, write the elements from the updat-

ed copy of the other parent’s schedule maintaining the order
 6. Calculate the value of the objective function for the newly obtained individual
• Output data: Newly generated individual – child
• Mutation
• Input data: The unit to be mutated, the order in which the jobs are processed on the ma-

chines, the processing time of each job on each machine
 1. Randomly select two elements in the layout of the individual for mutation
 2. Replace positions of the selected elements
 3. Calculate the objective function of the mutated individual
• Output data: Altered (mutated) individual
• GA
• Input data: order in which jobs are processed on machines, duration of processing each job

on each machine, number of individuals in population, n (number of jobs), m (number of
machines), c (crossover rate), number of generations

 1. Create an initial population
 2. Repeat until number_of_generations
 a. Repeat until number_of_units_in_the_population
 i. Randomly select the first parent from the best c% of the population
 ii. Randomly select the first parent from the best c% of the population
 iii. Perform crossover
 b. Repeat for each individual in the new population
 i. Perform mutation
 c. Create a sequence of individuals of the old and new population sorted non-de-

creasingly by execution time
 d. Determine the next generation as the number_of_individuals_in_the_popula-

tion of the best individuals from the sequence generated in previous step
 3. The first individual of the last generation represents the best obtained solution
 4. Present the best obtained solution on the Gantt chart
• Output data: The best solution obtained and the Gantt chart of the best solution obtained

3.2. Variable Neighborhood Search Method

Variable neighborhood search heuristics (VNS) was presented by the authors Mladenović and
Hansen (1997) and since then it has been widely used in solving a large number of optimization
problems. The method is based on the principle of local search, whereby the search environment

44

6th International Scientific Conference ITEMA 2022
Conference Proceedings

changes. After defining a set of environments and determining the initial solution, the process of
improving the solution consists of a local search phase and a perturbation phase (Hansen et al.,
2017). In the implemented VNS based algorithm three methods of modifying the solution were
used. The adjacent solution within the first neighborhood is obtained by swapping the places of
two randomly selected array elements, and while choosing a solution within the second environ-
ment, the element of the sequence and the position to which that element will be moved are ran-
domly determined, whereby all elements in between are moved by one place. The jump (pretur-
bation) function is defined as a multiple repetition of the method of moving to a second neigh-
borhood solution. That is, a jump is performed by moving several randomly selected layout ele-
ments to another, also randomly selected position. The implemented algorithm can be represent-
ed by the following functions:
• Check neighborhoods for improvements
• Input data: order in which jobs are processed on machines, duration of processing each job

on each machine, current solution, number of environments, maximum number of consec-
utive attempts without improvement

 1. Set i=1 and set the counter of consecutive attempts without improvement to 0.
 2. Repeat until maximum number of consecutive attempts without improvement is

reached (Loop 1)
 a. Repeat until i is greater than the number of environments (Loop 2)
 i. Select the neighboring solution y from the i-th neighborhood of the current

solution.
 ii. Calculate the objective function for y.
 iii. If that solution is better than the current one, set current solution to y, set

the counter of consecutive attempts without improvement to 0 and return
to the beginning of Loop 2.

 iv. Otherwise, increase i by 1 (next neighborhood) and return to the begin-
ning of Loop 2.

 b. Increase the counter of consecutive attempts without improvement (current
solution remains unchanged) and return to the beginning of Loop 1.

• Output data: Current solution
• VNS
• Input data: order in which jobs are processed on machines, duration of processing each

job on each machine, n (number of jobs), m (number of machines), maximum number of
jumps, maximum number of consecutive attempts without improvement

 1. Create the initial layout by repeating the sequences 1,2,3,…,n m times.
 2. Compute the objective function for the initial solution.
 3. Set the best achieved solution to the initial solution.
 4. Repeat until maximum number of jumps is reached (Loop 1)
 a. Check neighborhoods for improvements
 b. If the current solution is better than the best achieved solution, update the best

achieved solution
 c. Perform a jump
 d. Increase jump counter
 e. Set the solution obtained by jumping to the current solution
 f. Compute the objective function for the newly obtained current solution
 g. Return to the beginning of Loop 1
 5. Present the best achieved solution on the Gantt chart
• Output data: Best achieved solution, Gantt chart of the best achieved solution.

45

Comparing Genetic Algorithm and Variable Neighborhood Search Method for Solving Job Shop Problem

4. EXPERIMENT RESULTS

For the experiment performing purposes, test instances presented by Taillard (1993) were used.
The implemented solving methods were applied to groups of examples with dimensions of
15x15, 30x20 and 50x15, that is, test examples with 15 jobs and 15 machines, 30 jobs and 20 ma-
chines and with 50 jobs and 15 machines. For all examples with dimensions 15x15 and 50x15
optimal solutions are known, most of which were achieved by Brinkkötter and Brucker (1999)
and Taillard (1993). Benchmark results for 30x20 examples and other test instances are present-
ed by Shylo (2014) and updated regularly.

The stopping criterion in both implemented methods is not time-based, i.e. it is fulfilled by a
certain number of generations for the genetic algorithm and the number of jumps for the var-
iable neighborhood search method, but presented results were obtained for approximately the
same time, close to 5 minutes of work per example.

Table 1 presents the results obtained by solving test examples with dimensions 15x15, and Ta-
ble 2 shows the results for examples with dimensions 30x20. The best solutions obtained from
10 runs of the algorithm are shown.

Table 1. Results for 15x15 test instances
15x15 Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9
GA 1282 1278 1275 1216 1276 1267 1266 1259 1351
VNS 1269 1276 1257 1220 1263 1267 1257 1258 1323
Optimal 1231 1244 1218 1175 1224 1238 1227 1217 1274
relative deviation GA 4.1% 2.7% 4.7% 3.5% 4.2% 2.3% 3.2% 3.5% 6.0%
relative deviation VNS 3.1% 2.6% 3.2% 3.8% 3.2% 2.3% 2.4% 3.4% 3.8%
Better algorithm VNS VNS VNS GA VNS = VNS VNS VNS

Table 2. Results for 30x20 test instances
30x20 Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9
GA 2374 2309 2189 2325 2260 2356 2219 2274 2281
VNS 2262 2187 2089 2209 2192 2259 2134 2184 2209
Benchmark 2006 1939 1846 1979 2000 2006 1889 1937 1963
relative deviation GA 18.3% 19.1% 18.6% 17.5% 13.0% 17.4% 17.5% 17.4% 16.2%
relative deviation VNS 12.8% 12.8% 13.2% 11.6% 9.6% 12.6% 13.0% 12.8% 12.5%
Better algorithm VNS VNS VNS VNS VNS VNS VNS VNS VNS

As can be seen, the VNS algorithm provided better solutions for the vast majority of the first 2
sets of examples. In Table 3 are presented results achieved solving test instances with dimen-
sions 50x15. Here, the best results out of 20 runs of the algorithms are shown.

Table 3. Results for 50x15 test instances
50x15 Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9 Ex. 10
GA 3096 2932 3016 2845 2907 2968 2984 3111 3075 2877
VNS 2940 2971 2837 2884 2909 2945 3108 3061 2853 2887
Optimal 2760 2756 2717 2839 2679 2781 2943 2885 2655 2723
relative deviation GA 12.17% 6.39% 11.00% 0.21% 8.51% 6.72% 1.39% 7.83% 15.82% 5.66%
relative deviation VNS 6.52% 7.80% 4.42% 1.59% 8.59% 5.90% 5.61% 6.10% 7.46% 6.02%
Better algorithm VNS GA VNS GA GA VNS GA VNS VNS GA

46

6th International Scientific Conference ITEMA 2022
Conference Proceedings

When considering examples with greater dimensions, VNS is not as dominant compared to GA
as it was for smaller test instances. In fact, both algorithms have the same number of better solu-
tions, but the VNS has more consistently low relative deviations. For better comparison, aver-
age relative deviations from optimal or best known solutions for both algorithms for all sets of
examples are shown in Table 4.

Table 4. Average relative deviations
15x15 30x20 50x15 Total average

GA 3.8% 17.2% 7.57% 9.52%
VNS 3.1% 12.3% 6.00% 7.13%

In total scores, VNS still shows better results than GA. As hybrid versions of the genetic algo-
rithm are often found in the literature, one assumption that would explain the results could be that
the basic form of the genetic algorithm is not suitable enough for solving the Job Shop problem.

5. CONCLUSION

The paper describes solving Job Shop scheduling problem using a variable neighborhood search
method and genetic algorithm. The obtained results were compared with each other. And the ex-
periment showed that the variable neighborhood search method gave more successful results for
the majority of test examples. Although the subject of the work was primarily a comparison of
the two implemented methods, the obtained results were also compared with the optimal (or best
known) solutions for the tested examples, where none of the methods managed to reach these val-
ues. Deviations from the optimal solutions were on average 9.52% for the genetic algorithm and
7.13% for the variable neighborhood search method. The planned direction of further research
would be the development of a hybrid method that would incorporate the positive features of both
algorithms with the aim of more precisely targeting the points where modification will be made
(mutation or transition to a neighboring solution) and thus increase the efficiency of the algorithm.

References

Brinkkötter, W., & Brucker, P. (1999). Solving open benchmark problems for the job shop
problem.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and job shops
scheduling. Mathematics of Operations Research, 1(2), 117–129.

Hansen, P., Mladenović, N., Todosijević, R., & Hanafi, S. (2017). Variable neighborhood search:
basics and variants. EURO Journal on Computational Optimization, 5(3), 423-454.

Holland, J. H. (1992), Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence, MIT press

Huang, K. L., & Liao, C. J. (2008). Ant colony optimization combined with taboo search for the
job shop scheduling problem. Computers & operations research, 35(4), 1030-1046.

Li, J. Q., Pan, Q. K., & Tasgetiren, M. F. (2014). A discrete artificial bee colony algorithm for the
multi-objective flexible job-shop scheduling problem with maintenance activities. Applied
Mathematical Modelling, 38(3), 1111-1132.

Li, X., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible job
shop scheduling problem. International Journal of Production Economics, 174, 93-110.

Liu, S. Q., Kozan, E., (2009), Scheduling trains as a blocking parallel-machine Job Shop sched-
uling problem, Computers & Operations Research, 36(10), 2840-2852.

47

Comparing Genetic Algorithm and Variable Neighborhood Search Method for Solving Job Shop Problem

Mattfeld, D. C. (2013). Evolutionary Search and the Job Shop: Investigations on Genetic Algo-
rithms for Production Scheduling, Springer Science & Business Media.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & operations
research, 24(11), 1097-1100.

Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2018). An effective and distribut-
ed particle swarm optimization algorithm for flexible job-shop scheduling problem. Jour-
nal of Intelligent Manufacturing, 29(3), 603-615.

Pinedo, L. (2008). Scheduling - theory, algorithms, and systems, Prentice hall.
Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., & Mahmoodian, V. (2015). An Ant

Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and
conflict-free routing of AGVs. Computers & Industrial Engineering, 86, 2-13.

Sevkli, M., & Azdin, M. E. (2006), A Variable Neighbourhood Search Algorithm for Job Shop
Scheduling Problems, Lecture Notes in Computer Science book series (LNCS, volume
3906).

Shylo, O. V. (2014). Job shop scheduling at Oleg V. Shylo: Personal webpage http://optimizizer.
com/TA.php

Taillard, E. (1993). Benchmarks for Basic Scheduling Problems, European Journal of Opera-
tional Research, Vol. 64, No. 2, pp. 278-285.

Turing, A. M. (1950). Computing Machinery and Intelligence, Mind, Vol. 59, No. 236 pp.
433–460.

Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2019). Review of job shop scheduling research
and its new perspectives under Industry 4.0. Journal of Intelligent Manufacturing, 30(4),
1809-1830.

http://optimizizer.com/TA.php
http://optimizizer.com/TA.php

