

25

USE OF “OWASP TOP 10” IN WEB APPLICATION SECURITY

Nikola Nedeljković1

Natalija Vugdelija2

Nenad Kojić3

DOI: https://doi.org/10.31410/ITEMA.2020.25

Abstract: Web application security vulnerabilities can lead to various attacks on users, some

of which can have major consequences. It is important to point out the weaknesses that allow

abuse, because often increased risk awareness is the first step in protecting web applications.

Some of the most critical security risks that organizations face today have been analyzed and

uncovered using OWASP Top 10. This paper presents concrete examples of attacks and abuse

of web applications. Through the implementation and analysis of attacks on web applications,

weaknesses that need to be eliminated in order to protect against potential new attacks are

identified. Especially, suggestions to help protect web applications from each type of attack

listed and described are provided.

Keywords: Web security, Web attack, Weaknesses of the web application.

INTRODUCTION

owadays, with many jobs being done online to prevent the spread of Covid-19 virus

infection, the importance of web application security has increased even further.

Normally, a successful business requires some kind of interaction – with other users

or with back-end databases, which could be susceptible to attacks. As stated by Alzahrani,

Alqazzaz, Zhu, Fu and Almashfi (2017) “threats may compromise web applications‘ security

by breaching an enormous amount of information, which could lead to severe economic losses

or cause damages” (p. 237). In addition to reliable transmission systems and secure

communication, another matter of great importance is application-level web security, which,

according to Scott, Sharp (2002) “refers to vulnerabilities inherent in the code of a web-

application itself (irrespective of the technologies in which it is implemented or the security of

the web-server / back-end database on which it is built)” (p. 396). The communication chain

that connects end users is as secure as its weakest link. Therefore, it is important to identify

any vulnerabilities that may lead to abuse during a multimedia session and to provide secure

and reliable communication with appropriate security services and mechanisms. Connecting to

a global, public network requires a global approach to using web applications safely, as is noted

by Andrian, Fauzi (2019) "application security must be applied to all infrastructure that

supports web applications, including the web application itself." (p. 68). The greater the

number of significant transactions performed over the Internet, the more motivated hackers are

to carry out an attack. According to Rafique, Humayun, Gul, Abbas, Javed (2015) “hackers in

recent years are increasingly targeting web applications, since most networks are closely

1 Enreach Labs, Omladinskih brigada 90 V, Belgrade, Serbia
2 Academy of Technical and Art Applied Studies Belgrade (ATUSS) – Department ICT College for

vocational studies, Zdravka Čelara 16, Belgrade, Serbia
3 Academy of Technical and Art Applied Studies Belgrade (ATUSS) – Department ICT College for

vocational studies, Zdravka Čelara 16, Belgrade, Serbia

N

https://doi.org/10.31410/ITEMA.2020.25
https://orcid.org/0000-0002-5552-2207
https://orcid.org/0000-0002-4051-3148
https://orcid.org/0000-0002-0447-7426

26

ITEMA 2020

Conference Proceedings

monitored through Intrusion Detection Systems (IDS) and firewalls” (p. 29). Web application

developers have a very difficult task to create a quality web application that will be protected

from malicious attacks, especially if we keep in mind that an army of hackers is working to

detect the weaknesses of web applications and that they are very motivated because it often

allows them significant financial gain. This is also indicated by Shahriar (2018) “Despite the

awareness of web application developers about safe programming practices, there are still

many aspects in web applications that can be exploited by an attacker” (p. 1). Additional

problem is that there are many inexperienced developers who are not aware of the potential

consequences of security vulnerabilities in a web application.

USING OWASP TOP 10

The Open Web Application Security Project (OWASP) is a nonprofit community of software

developers, engineers, and freelancers that provides resources and tools for web application

security. Every few years, OWASP publishes a report of the top 10 security risks to web

applications. The top 10 risks were first published in 2003 and since then the report has been

constantly updated and published every 3-4 years. Current version is from 2017. and can be

seen on the OWASP site. Many standards, books and tools list OWASP Top 10 as one of the

best resources in the field of web application security, which also notify Rafique, Humayun,

Gul, Abbas, Javed (2015) “OWASP Top 10 is aimed at analyzing the security of a system by

identifying the vulnerabilities of web applications.” (p. 37).

Information technologies are evolving very fast and we are all witnessing constant changes.

The development of web applications is also very intensive and one might think that the list of

the biggest risks is changing in the same way, but that is not the case. Most of the problems in

the “OWASP Top Ten 2017” are the same, or very similar, as in the first list. The web has

advanced significantly, but the security of web applications has lagged far behind that progress.

As security risks recur, in order to better understand the security of web applications, certain

attack methods are explained in detail.

Listed are some of the OWASP Top Ten (2017) web application security risks

1. A1-Injection: Most web applications use basic systems or functions such as database

or e-mail functionality. An application often uses user input to execute a command. If

the application does not calculate the user input correctly, malicious code can be

inserted, which would lead to the execution of unauthorized commands.

2. A2-Broken Authentication: In many cases, web applications contain functionality for

user authentication and session management. These functions could be incorrectly

implemented which allows attackers to access confidential information. In web

applications, ‘logged in’ users are often identified using a session. The application sees

if the user is logged in using that session, but it also sees malicious code.

3. A3-Sensitive Data Exposure: Leaks of confidential information can have major

consequences. An example when not enough security measures are taken is sending a

login form containing the username and password to the server via http. Some of the

confidential information, in addition to the codes, are credit card details, email

addresses and private data.

4. A8-Insecure Deserialization: The vulnerability applies to applications that use user-

defined input as a serialized object without input validation. It can lead to remote code

execution or to perform attack, including replay attacks, injection attacks, and privilege

escalation attacks.

27

 USE OF “OWASP TOP 10” IN WEB APPLICATION SECURITY

5. A9-Using Components with Known Vulnerabilities: Using CMS such as WordPress,

Joomla! and Drupal often contain vulnerabilities that are known to the general public.

Today, there are automatic scanners that use databases to scan a special platform.

6. A10-Insufficient Logging & Monitoring: Detecting an attack on a website is only

possible if there is enough logging and monitoring of the system. Recording should be

by levels of communication with the network, operating system and application.

EXAMPLES OF POSSIBLE ATTACKS

According to the law, one cannot attack without the permission of the owner, and certain

sanctions follow for such an act. Unfortunately, the legal system and supporting institutions

are often unable to monitor the development of cybercrime successfully enough, so the

perpetrators in many cases remain undetected or unpunished. This makes space for attacks by

people who do not plan to commit a crime for personal gain but for various motives, who

sometimes try to find and attack vulnerable systems and applications just for fun and cause

great damage. Attackers intensively explore areas of vulnerability and attacks are increasingly

targeted at web applications. Ethical hackers use their knowledge and skills to analyze and

increase security. In order to better protect the system from future attacks, ethical hackers must

think like real attackers and act like malicious users. Although ethical hackers may abuse their

knowledge at some point, it is easy to distinguish ethical from malicious hackers; according to

Engebretson (2010) „differences can be boiled down to three key points: authorization,

motivation, and intent” (p. 3).

The following are examples of possible attacks that could seriously compromise the

confidentiality, integrity, and availability of data and devices:

1. Example of an attack using social engineering and Cross-site scripting:

Step 1: The attacker sends a special URL to his victim, the text of the message sent

by the attacker can be for example: "Can you tell me exactly what THIS means",

where THIS is a link to the attacker's website.

Step 2: The victim clicks to open the given URL.

Step 3: JavaScript sends a cookie to the attacker's web server.

Step 4: The attacker saved the cookie to a text file.

Step 5: The victim returns to the original site unaware that she has just given a

session cookie to the attacker.

Step 6: The attacker can log in to the site via a session cookie

2. Example of an attack using SQL injection: An attacker searches an application to find

fields for user input. He checks whether this input is used for an SQL query, trying to

provoke an error message by, for example, adding single quotes, which corrupts the

SQL query. If an error occurs, the attacker knows it is vulnerable to SQL injection.

Some of the attempts to obtain useful information are:

a. 1' union select user(), database() – a

b. 1' union select table_schema, table_name from

information_schema.tables where table_schema = '******' -- a

3. Example of an attack bypassing login and security barriers:

a. Sometimes it is enough for the attacker to, browsing a web application and

navigating through the pages, discover access to one of the pages on which

users normally need to be logged in to abuse it.

b. Also, if by browsing through the cookies the attacker finds a cookie of type

login = false, which in many cases is a way for the application to differentiate

28

ITEMA 2020

Conference Proceedings

between logged in and unregistered users, it is enough for the attacker to

change the cookie value to login = true, or in some cases login = (username)

to access the application as a logged in user.

4. Example of an attack using insecurities in a CMS: A large number of CMS-s being used

have a similar appearance and are very recognizable. Also, the name of the CMS used

is written somewhere in the page. By viewing the application code, it is possible to

determine exactly which one it is, if it is not directly indicated. An attacker can use

some of the well-known CMS scanners – wpscan (Wordpress) and joomscan (Joomla)

to find vulnerabilities in the version used by the user. This vulnerability can later be

exploited to attack the system.

METHODS OF DEFENSE

It is important to point out the weaknesses that allow abuse, because often increased risk

awareness is the first step in safeguarding web applications. According to Parimi and Babu

(2020) “Companies will be responsible for the personal data in future” (p. 924).

There are published lists of activities, like the one on the OWASP site, that can prevent attacks

or at least reduce the possibility of abuse. According to Rafique, Humayun, Gul, Abbas, Javed

(2015) “OWASP is major source to construct and validate web security processes and

standards” (p. 28). The following section lists some of the ways to defend against malicious

attacks that are not too demanding for users and that have proven to be very useful in securing

web applications.

1. A1-Injection

a. Use verified server validations of user entries.

b. Use output characters for all dynamic arrays.

c. Use LIMIT and other SQL control commands to reduce the number of results

obtained, thus making the outflow of information as small as possible in case of

a security breach.

2. A2-Broken Authentication

a. Implement multifactor authentication.

b. Do not place an application with basic credentials.

c. Make sure that weak passwords are not being used.

d. Align passwords with standards for creating passwords.

e. Use the same error messages for all errors.

f. Limit the number of incorrect password attempts.

a. Use the server to generate a session ID

3. A3-Sensitive Data Exposure

a. Classify data and arrange them by sensitivity, and store and dispose of those

with the highest sensitivity carefully.

b. Do not store sensitive data locally with the user.

c. Encrypt all sensitive data.

d. Use the latest strong encryption algorithms.

e. Encrypt all data in transit, not only sensitive data.

f. Disable caching for response that contain sensitive data.

g. Verify independently the effectiveness of the server and system configuration.

4. A8-Insecure Deserialization

a. Implement integrity checks such as digital signature.

b. Enforcing strict type constraints during deserialization before object creation.

29

 USE OF “OWASP TOP 10” IN WEB APPLICATION SECURITY

c. Isolate code that deserializes.

d. Log deserialization exceptions and failures.

5. A9-Using Components with Known Vulnerabilities

a. Remove unused library and file.

b. Continuously inventory the versions of both client-side and server-side

components and their dependencies using tools.

c. Only obtain components from official sources over secure links.

d. Monitor for libraries and components that are unmaintained or do not create

security patches for older versions.

6. A10-Insufficient Logging & Monitoring

a. Ensure all login, access control failures, and server-side input validation failures

can be logged with sufficient user context to identify suspicious or malicious

accounts.

b. Ensure that logs are generated in a format that can be easily consumed by a

centralized log management solution.

c. Ensure transactions have an audit trail with integrity controls.

d. Establish effective monitoring and alerting such that suspicious activities are

detected.

e. Establish or adopt an incident response and recovery plan.

FUTURE RESEARCH DIRECTIONS

Web applications are being more and more used, so there is a growing awareness of the

importance of their security. More users will begin to see the need for a good security policy.

A comprehensive analysis of potential risks is important for a good security mechanism. It

would be useful to analyze other different types of attacks, such as brute force attacks or attacks

using an insecure file upload. In future research, the impact of attacks on the rest of the risks

from the OWASP Top Ten list should be paid attention to, as well as which of them are easier

and which are more difficult to abuse.

CONCLUSION

Through carrying out and analyzing attacks on web applications, it can be noticed that some

weaknesses are easier to abuse than others, as well as that attacks can be more or less harmful

to the application and its users, which is why it is necessary to develop an appropriate security

policy. Using Components with Known Vulnerabilities is a flaw that can be exploited relatively

easily, and depending on the type of weakness detected, the damage can be either minor or

major. Some of the vulnerabilities that an attacker can most easily take advantage of our

injection and corrupt authentication. By finding an opening for injection, an attacker can easily

add some of the well-known codes, after which he would easily attack the application server

itself. In contrast, the most difficult flaw for an attacker to abuse is insecure deserialization. It

is often difficult to detect and exploit such a flaw, but it is the most harmful to the application

and can have major consequences. Also, injection, corrupt authentication and detection of

sensitive data are security vulnerabilities that lead to the greatest damage to a web application.

These can lead to system crashes, the attacker getting admin rights, sensitive data, such as credit

card data and personal data, being released to the public, and the like. The flaw from the list

which causes the least damage per attack is insufficient monitoring, but with this flaw the future

defense of the system is much more difficult, as is the elimination of the current attack.

30

ITEMA 2020

Conference Proceedings

REFERENCES

Alzahrani, A., Alqazzaz, A., Zhu, Y., Fu, H. and Almashfi, N. (2017). Web Application

Security Tools Analysis, IEEE 3rd international conference on big data security on cloud

(bigdatasecurity), IEEE international conference on high performance and smart

computing (hpsc), and IEEE international conference on intelligent data and security

(ids), Beijing, 2017, (pp. 237-242), doi: 10.1109/BigDataSecurity.2017.47.

Andrian, R., Fauzi, A. (2019). Security Scanner for Web Applications Case Study: Learning

Management System JOIN (Jurnal Online Informatika) Volume 4 No. 2 | December

2019., 63-68

Engebretson, P. (2010) The basics of hacking and penetration testing: ethical hacking and

penetration testing made easy, Elsevier, USA: Syngress

OWASP. (n.d.). Top 10-2017 Top 10. Available at: OWASP:

https://www.owasp.org/index.php/Top_10-2017_Top_10

Parimi, M., R., Babu, S. (2020) Critical Analysis of Software Vulnerabilities through Data

Analytics, Proceedings of the International Conference on Industrial Engineering and

Operations Management Dubai, UAE, March 10-12, 2020, (pp. 923-934)

Rafique, S., Humayun, M., Gul, Z., Abbas, A. and Javed, H. (2015) Systematic Review of Web

Application Security Vulnerabilities Detection Methods. Journal of Computer and

Communications, 3, 28-40. doi: 10.4236/jcc.2015.39004.

Scott, D., Sharp, R. (2002) Abstracting application-level web security WWW '02: Proceedings

of the 11th international conference on World Wide Web May 2002 (pp. 396–407)

https://doi.org/10.1145/511446.511498

Shahriar, H. (2018) Web Security Vulnerabilities: Challenges and Solutions A Tutorial

Proposal for ACM SAC 2018,” (pp. 1–5),

https://www.owasp.org/index.php/Top_10-2017_Top_10
http://dx.doi.org/10.4236/jcc.2015.39004
javascript:void(0);
https://doi.org/10.1145/511446.511498

