Gordana Jelić – Academy of Technical and Art Applied Studies Belgrade, Department School of Information and Communication Technologies, Zdravka Čelara 16, Belgrade, Serbia
Danica Mamula Tartalja – Academy of Technical and Art Applied Studies Belgrade, Department School of Information and Communication Technologies, Zdravka Čelara 16, Belgrade, Serbia
Keywords:
Artificial intelligence;
Communication;
Healthcare
DOI: https://doi.org/10.31410/ITEMA.S.P.2023.81
Abstract: AI, as an integral part of various applications and devices in mHealth, can help establish reliable communication in healthcare. AI Chatbots can understand and respond to patients’ language, providing instant answers to common questions. They can conduct initial assessments of patients’ physical or mental conditions, assist patients through diverse healthcare processes, and offer support to individuals experiencing adverse health conditions. Additionally, wearables and smartphones can collect vast amounts of information that can be further analyzed using AI and machine learning technologies and used to identify risk factors and potential health patterns that may not be immediately apparent, thus enabling personalized healthcare interventions. This paper aims to point out that Chatbots, being user-friendly and highly accessible, are facilitating online healthcare services and helping patients to self-manage their conditions. Therefore, AI-powered solutions can be an efficient tool for improving communication with patients and easing the pressures faced by healthcare professionals.
7th International Scientific Conference on Recent Advances in Information Technology, Tourism, Economics, Management and Agriculture – ITEMA 2023 – Selected Papers, Hybrid (Faculty of Organization and Informatics Varaždin, University of Zagreb, Croatia), October 26, 2023
ITEMA Selected Papers published by: Association of Economists and Managers of the Balkans – Belgrade, Serbia
ITEMA conference partners: Faculty of Economics and Business, University of Maribor, Slovenia; Faculty of Organization and Informatics, University of Zagreb, Varaždin; Faculty of Geography, University of Belgrade, Serbia; Institute of Marketing, Poznan University of Economics and Business, Poland; Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania”, Romania
ITEMA Conference 2023 Selected Papers: ISBN 978-86-80194-76-9, ISSN 2683-5991, DOI: https://doi.org/10.31410/ITEMA.S.P.2023
Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.
References
Alfarghaly, O., Khaled, R., Elkorany, A., Helal, M., & Fahmy, A. (2021). Automated radiology report generation using conditioned transformers. Informatics in Medicine Unlocked, 24, 100557. https://doi.org/10.1016/j.imu.2021.100557
Benefits of Chatbots in Healthcare: 9 Use Cases of Healthcare Chatbots. (2023, November 5). In inbenta. https://www.inbenta.com/articles/benefits-of-chatbots-in-healthcare-9-use-cases-of-healthcare-chatbots/
Daher, M., Koa, J., Boufadel, P., Singh, J., Fares, M. Y., & Abboud, J. A. (2023). Breaking barriers: can ChatGPT compete with a shoulder and elbow specialist in diagnosis and management?. JSES international, 7(6), 2534-2541. https://doi.org/10.1016/j.jseint.2023.07.018
Galetsi, P., Katsaliaki, K., & Kumar, S. (2023). Exploring benefits and ethical challenges in the rise of mHealth (mobile healthcare) technology for the common good: An analysis of mobile applications for health specialists. Technovation, 121, 102598. https://doi.org/10.1016/j.technovation.2022.102598
Hallucination (artificial intelligence). (2023, December 13). In Wikipedia. https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence
Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H., Lee, M. J., & Asadi, H. (2018). eDoctor: machine learning and the future of medicine. Journal of Internal Medicine, 284(6), 603–619. https://doi.org/10.1111/joim.12822
Harrison, C. J., & Sidey-Gibbons, C. J. (2021). Machine learning in medicine: a practical introduction to natural language processing. BMC Medical Research Methodology, 21(1). https://doi.org/10.1186/s12874-021-01347-1
Hyland, K. (2005). Metadiscourse. London-New York, UK-USA: Continuum.
Jelić, G., Mamula Tartalja, D., & Osmani, E. (2022). Potencijal SMS komunikacije u mobilnom zdravstvu. Zbornik radova, LXVI konferencija ETRAN, SSDI1.7, 844-848, 2022. ISBN 978-86-7466-930-3
Kreimeyer, K., Foster, M., Pandey, A., Arya, N., Halford, G., Jones, S. F., Forshee, R., Walderhaug, M., & Botsis, T. (2017). Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. Journal of Biomedical Informatics, 73, 14-29. https://doi.org/10.1016/j.jbi.2017.07.012
Li, H., Moon, J. T., Iyer, D., Balthazar, P., Krupinski, E. A., Bercu, Z. L., Newsome, J. M., Banerjee, I., Gichoya, J. W., & Trivedi, H. M. (2023). Decoding radiology reports: Potential application of OpenAI ChatGPT to enhance patient understanding of diagnostic reports. Clinical Imaging, 101, 137-141. https://doi.org/10.1016/j.clinimag.2023.06.008
Liebrenz, M., Schleifer, R., Buadze, A., Bhugra, D., & Smith, A. (2023). Generating scholarly content with ChatGPT: ethical challenges for medical publishing. The Lancet Digital Health, 5(3), e105-e106.
Mamula Tartalja, D., Jelić, G., & Osmani, E. (2023). Značaj komunikacije za ishode zdravstvene nege. Zbornik radova, LXVII konferencija ETRAN, SSDI1.3. https://www.etran.rs/2023/zbornik-radova/
Moradi, M., & Samwald, M. (2022). Deep learning, natural language processing, and explainable artificial intelligence in the biomedical domain. arXiv preprint arXiv:2202.12678.
OpenAI. (2023). ChatGpT (Mar 14 version) [Large language model] https://chat.openai.com/chat
Patel, S. B., & Lam, K. (2023). ChatGPT: the future of discharge summaries?. The Lancet Digital Health, 5(3), e107-e108. https://doi.org/10.1016/S2589-7500(23)00021-3
Pohrebniyak, I. (2023, November 14). Impact of Generative AI in Healthcare: Benefits, Use Cases, Limitations. master.of.code. https://masterofcode.com/blog/generative-ai-in-healthcare
The Pros and Cons of Using ChatGPT in Clinical Radiology: an Open Discussion. (2023, May 24). In Imaging Technology News. https://www.itnonline.com/content/pros-and-cons-using-chatgpt-clinical-radiology-open-discussion
Searle, J. R. (1969). Speech Acts. Cambridge, UK: Cambridge University Press.
Srivastav, S., Chandrakar, R., Gupta, S., Babhulkar, V., Agrawal, S., Jaiswal, A., Prasad, R., & Wanjari, M. B. (2023). ChatGPT in Radiology: The Advantages and Limitations of Artificial Intelligence for Medical Imaging Diagnosis. Cureus. https://doi.org/10.7759/cureus.41435
Stetoskop. (2023, August 2). Dermatology. Query: #214670. Retrieved October 11, from www. stetoskop.info