Stojan Ivanišević – No Affiliation
Rajko Ivanišević – University of Novi Sad – Faculty of Economics, Segedinski put 9-11, 24000 Subotica, Serbia
Aleksandar Ivić – No Affiliation
Keywords:
AI;
AI models;
Data resource management;
Decision making;
Data security;
Risk assessment;
Data loss;
GDPR;
Data breach
DOI: https://doi.org/10.31410/ITEMA.2023.1
Abstract: As the use of artificial intelligence (AI) language models in business operations becomes an everyday reality, the management of company data resources, including the prevention of loss, raises critical questions about data privacy, security, and ethical considerations become increasingly important. This study presents a comprehensive examination – literature review, as a foundation for further research on AI model usage and the effective management of company data resources. The literature review surveys current research, revealing key themes and trends related to the topic, and offering insights into the reality of AI model use. This study aims to provide a holistic understanding of the complex interaction between AI, data resource management, and corporate decision-making.
7th International Scientific Conference on Recent Advances in Information Technology, Tourism, Economics, Management and Agriculture – ITEMA 2023 – Conference Proceedings, Hybrid (Faculty of Organization and Informatics Varaždin, University of Zagreb, Croatia), October 26, 2023
ITEMA Conference Proceedings published by: Association of Economists and Managers of the Balkans – Belgrade, Serbia
ITEMA conference partners: Faculty of Economics and Business, University of Maribor, Slovenia; Faculty of Organization and Informatics, University of Zagreb, Varaždin; Faculty of Geography, University of Belgrade, Serbia; Institute of Marketing, Poznan University of Economics and Business, Poland; Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania”, Romania
ITEMA Conference 2023 Conference Proceedings: ISBN 978-86-80194-75-2, ISSN 2683-5991, DOI: https://doi.org/10.31410/ITEMA.2023
Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.
References
Akter, S., Michael, K., Uddin, M. R., McCarthy, G., & Rahman, M. (2022). Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics. Annals of Operations Research, 1-33.
Benbya, H., Pachidi, S., & Jarvenpaa, S. (2021). Special issue editorial: Artificial intelligence in organizations: Implications for information systems research. Journal of the Association for Information Systems, 22(2), 10.
Bharadiya, J. P. (2023). Machine Learning and AI in Business Intelligence: Trends and Opportunities. International Journal of Computer (IJC), 48(1), 123-134.
Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, 57, 102225.
Campbell, C., Sands, S., Ferraro, C., Tsao, H. Y. J., & Mavrommatis, A. (2020). From data to action: How marketers can leverage AI. Business Horizons, 63(2), 227-243.
Cheatham, B., Javanmardian, K., & Samandari, H. (2019). Confronting the risks of artificial intelligence. McKinsey Quarterly, 2(38), 1-9.
Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283-314. https://doi.org/10.1016/j.jbusres.2020.08.019
Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 24(5), 1709-1734.
Fountaine, T., McCarthy, B., & Saleh, T. (2019). Building the AI-powered organization. Harvard Business Review, 97(4), 62-73.
Gregory, R. W., Henfridsson, O., Kaganer, E., & Kyriakou, H. (2021). The role of artificial intelligence and data network effects for creating user value. Academy of Management Review, 46(3), 534-551.
Jöhnk, J., Weißert, M., & Wyrtki, K. (2021). Ready or not, AI comes—an interview study of organizational AI readiness factors. Business & Information Systems Engineering, 63, 5-20.
Kitchenham, B. (2004). Procedures for Performing Systematic Reviews (Technical Report). Keele University.
Lee, J., Suh, T., Roy, D., & Baucus, M. (2019). Emerging technology and business model innovation: the case of artificial intelligence. Journal of Open Innovation: Technology, Market, and Complexity, 5(3), 44.
Loureiro, S. M. C., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 129, 911-926.
Overgoor, G., Chica, M., Rand, W., & Weishampel, A. (2019). Letting the computers take over: Using AI to solve marketing problems. California Management Review, 61(4), 156-185.
Reddy, S., Allan, S., Coghlan, S., & Cooper, P. (2020). A governance model for the application of AI in health care. Journal of the American Medical Informatics Association, 27(3), 491-497.
Rudin, C., & Radin, J. (2019). Why are we using black box models in AI when we don’t need to? A lesson from an explainable AI competition. Harvard Data Science Review, 1(2), 1-9.
Wamba-Taguimdje, S. L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924.