fbpx

Miloš Živadinović – Faculty of Organizational Sciences, Jove Ilića, 154, 11000, Belgrade, Serbia

Keywords:
Large language models;
ChatGPT;
Text mining

DOI: https://doi.org/10.31410/ITEMA.S.P.2023.73

 

Abstract: The appearance of Large Language Models (LLMs) has brought ad­vancements in natural language processing (NLP), making it more available to everyone. This paper examines the application of LLMs in text mining, with a fo­cus on ChatGPT by OpenAI. The author provides a brief overview of LLMs, high­lighting their structure and training techniques, as well as parameter tuning. Uti­lizing ChatGPT as an example of an LLM, this paper identifies the model’s ca­pabilities and constraints in extracting insights from textual data. Based on the author’s findings, they suggest several applications of LLMs for text mining that provide better text comprehension and set the tone for further research.

7th International Scientific Conference on Recent Advances in Information Technology, Tourism, Economics, Management and Agriculture – ITEMA 2023 – Selected Papers, Hybrid (Faculty of Organization and Informatics Varaždin, University of Zagreb, Croatia), October 26, 2023

ITEMA Selected Papers published by: Association of Economists and Managers of the Balkans – Belgrade, Serbia

ITEMA conference partners: Faculty of Economics and Business, University of Maribor, Slovenia; Faculty of Organization and Informatics, University of Zagreb, Varaždin; Faculty of Geography, University of Belgrade, Serbia; Institute of Marketing, Poznan University of Economics and Business, Poland; Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine ”King Michael I of Romania”, Romania

ITEMA Conference 2023 Selected Papers: ISBN 978-86-80194-76-9, ISSN 2683-5991, DOI: https://doi.org/10.31410/ITEMA.S.P.2023

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.

Suggested citation
Živadinović, M. (2023). Application of Large Language Models for Text Mining: The Study of ChatGPT. In V. Bevanda (Ed.), International Scientific Conference ITEMA 2023: Vol 7. Selected Papers (pp. 73-80). Association of Economists and Managers of the Balkans. https://doi.org/10.31410/ITEMA.S.P.2023.73

References

About. (n.d.). Retrieved December 19, 2023, from https://openai.com/about

Allamanis, M., & Sutton, C. (2013). Mining source code repositories at massive scale using lan­guage modeling. 2013 10th Working Conference on Mining Software Repositories (MSR), 207–216. https://doi.org/10.1109/MSR.2013.6624029

Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A Pretrained Language Model for Scientif­ic Text. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3613–3618. https://doi.org/10.18653/v1/D19-1371

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners (arXiv:2005.14165). arXiv. http://arxiv.org/abs/2005.14165

Browsing. (n.d.). Retrieved December 15, 2023, from https://openai.com/blog/chatgptplugins#browsing

ChatGPT. (n.d.). Retrieved July 18, 2023, from https://chat.openai.com

Chat Plugins. (n.d.). Retrieved December 15, 2023, from https://platform.openai.com/docs/plugins/introduction/chat-plugins-beta

Database Data Warehousing Guide. (n.d.). Oracle Help Center. Retrieved December 16, 2023, from https://docs.oracle.com/en/database/oracle/oracle-database/21/dwhsg/extraction-da­ta-warehouses.html#GUID-A9A3D5CD-A34A-46BB-844A-76DFE119CE02

de Rosa, G. H., & Papa, J. P. (2021). A survey on text generation using generative adversarial net­works. Pattern Recognition, 119, 108098. https://doi.org/10.1016/j.patcog.2021.108098

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidi­rectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. https://doi.org/10.48550/arXiv.1810.04805

Generative AI Market Size, Share and Industry Trends [2030]. (n.d.). Retrieved December 18, 2023, from https://www.fortunebusinessinsights.com/generative-ai-market-107837

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its ap­plication to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234–1240. https://doi.org/10.1093/bioinformatics/btz682

Ling, M. H. (2023). ChatGPT (Feb 13 Version) is a Chinese Room. https://doi.org/10.48550/ARXIV.2304.12411

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, Prompt, and Pre­dict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys, 55(9), 195:1-195:35. https://doi.org/10.1145/3560815

Sumathy, K., & Chidambaram, M. (2013). Text Mining: Concepts, Applications, Tools and Is­sues An Overview. International Journal of Computer Applications, 80(4), 29–32. https://doi.org/10.5120/13851-1685

Luo, R., Sun, L., Xia, Y., Qin, T., Zhang, S., Poon, H., & Liu, T.-Y. (2022). BioGPT: Generative pre-trained transformer for biomedical text generation and mining. Briefings in Bioinformat­ics, 23(6), bbac409. https://doi.org/10.1093/bib/bbac409

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., & Xiong, C. (2022, March 25). CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis. International Conference on Learning Representations. https://www.seman­ticscholar.org/paper/CodeGen%3A-An-Open-Large-Language-Model-for-Code-with-Ni­jkamp-Pang/38115e80d805fb0fb8f090dc88ced4b24be07878

OpenAI. (n.d.). Retrieved December 14, 2023, from https://openai.com/

Radford, A., & Narasimhan, K. (2018). Improving Language Understanding by Generative Pre-Train­ing. https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Genera­tive-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-Resolution Im­age Synthesis with Latent Diffusion Models (arXiv:2112.10752). arXiv. http://arxiv.org/abs/2112.10752

Shazeer, N. (2020). GLU Variants Improve Transformer (arXiv:2002.05202; Version 1). arXiv. https://doi.org/10.48550/arXiv.2002.05202

Similarweb. (n.d.). Chat.openai.com traffic analytics, ranking stats & tech stack. Retrieved De­cember 14, 2023, from https://www.similarweb.com/website/chat.openai.com/

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., & Liu, Y. (2023). RoFormer: Enhanced Trans­former with Rotary Position Embedding (arXiv:2104.09864; Version 5). arXiv. https://doi.org/10.48550/arXiv.2104.09864

Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A., Saravia, E., Poulton, A., Kerkez, V., & Stojnic, R. (2022). Galactica: A Large Language Model for Science. https://doi.org/10.48550/ARXIV.2211.09085

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., & Lample, G. (2023). LLa­MA: Open and Efficient Foundation Language Models (arXiv:2302.13971). arXiv. https://doi.org/10.48550/arXiv.2302.13971

Touvron, H., Martin, L., & Stone, K. (n.d.). Llama 2: Open Foundation and Fine-Tuned Chat Models.

Tucker, H. (n.d.). Sprechen Sie Growth? How Duolingo Became A Hot Stock In 2023, Plus 99 More Mid-Cap Winners. Forbes. Retrieved December 16, 2023, from https://www.forbes.com/sites/hanktucker/2023/12/15/sprechen-sie-growth-how-duolingo-became-a-hot-stock-in-2023-plus-99-more-mid-cap-winners/  

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017, June 12). Attention is All you Need. Neural Information Processing Systems. https://www.semanticscholar.org/paper/Attention-is-All-you-Need-Vaswani-Sha­zeer/204e3073870fae3d05bcbc2f6a8e263d9b72e776 

Wang, L., Zhao, Z., Liu, H., Pang, J., Qin, Y., & Wu, Q. (2023). A Review of Intelligent Music Generation Systems (arXiv:2211.09124). arXiv. http://arxiv.org/abs/2211.09124 

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Xia, F., Le, Q., & Zhou, D. (2022). Chain of Thought Prompting Elicits Reasoning in Large Language Models. ArX­iv. https://www.semanticscholar.org/paper/Chain-of-Thought-Prompting-Elicits-Reason­ing-in-Wei-Wang/1b6e810ce0afd0dd093f789d2b2742d047e316d5 

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C. (2023). A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT (arXiv:2302.11382). arXiv. http://arxiv.org/abs/2302.11382 

Wolfram Plugin for ChatGPT. (n.d.). Retrieved December 15, 2023, from https://www.wolfram.com/wolfram-plugin-chatgpt/  

Yao, Y., Xu, X., & Liu, Y. (2023). Large Language Model Unlearning. https://doi.org/10.48550/ARXIV.2310.10683 

Connect with us

Association of Economists and Managers of the Balkans – UdEkoM Balkan
179 Ustanicka St, 11000 Belgrade, Serbia

https://www.udekom.org.rs/home

Udekom Balkans is a dynamic non-governmental and non-profit organization, established in 2014 with a mission to foster the growth of scientific knowledge within the Balkan region and beyond. Our primary objectives include advancing the fields of management and economics, as well as providing educational resources to our members and the wider public.

Who We Are: Our members include esteemed university professors from various scientific disciplines, postgraduate students, and experts from ministries, public administrations, private and public enterprises, multinational corporations, associations, and similar organizations.

Building Bridges Together: Over the course of ten years since our establishment, the Association of Economists and Managers of the Balkans has established impactful partnerships with more than 1,000 diverse institutions across the Balkans region and worldwide.

ITEMA conference publications are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.