fbpx

Aleksandar Valjarević
Dragica Živković


University of Novi Sad, Faculty of Agriculture, Novi Sad, Serbia
University of Novi Sad, Faculty of Sciences, Novi Sad, Serbia

2nd International Scientific Conference on Recent Advances in Information Technology, Tourism, Economics, Management and Agriculture – ITEMA 2018 – Graz, Austria, November 8, 2018, CONFERENCE PROCEEDINGS published by the Association of Economists and Managers of the Balkans, Belgrade, Serbia; ISBN 978-86-80194-13-4

Abstract

Climatic properties of the world have been changing through time. However, changed or unchanged, climatic properties influence the distribution of some plants. In this paper, we used three different prediction models of climate changes: global model (CMIP5 30-seconds), for the time period extending to 2100, in the territory of Europe. Furthermore, we embedded four possibilities of climate changes within this prediction model. Slight, when there are no climate change effects and temperatures increase for 0.50C. Moderate temperatures’ increase would be up for 2.00C, whereas severe temperatures’ increase would be up for 5.00C. Incredibly, temperatures will increase to the maximum resistance of predicted crops.  With the help of GIS multi-criteria analysis and agroclimatological modeling, we showed models for corn in case of temperatures’ increase in the territory of Europe. The mapping of this hazard could be very important for climatology, plants sciences, agronomy, geography and economy.

 

Key words

GIS, corn, multi-criteria analysis, Europe, Mapping


References

[1] United Nations Predictions. Received from the web-page https://www.un.org/en/index.html
[2] Kottek, M., J., Grieser, C., Beck, B., Rudolf, F. R. (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, Vol.15, pp.259-263. DOI. 10.1127/0941-2948/2006/0130.
[3] Blazejczyk, K., Epstein, Y., Jendritzky., Jendritzky, K.,Staiger, H.,Tinz, B. (2012) Comparison of UTCI to selected thermal indices. International Journal of Biometeorology, Vol. 56, no.3, pp.515-535. https://doi.org/10.1007/s00484-011-0453-2.
[4] Paterson, R.M., Kumar, L., Taylor, S., Lima, N. (2015) Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia, Scientific Reports, Vol.5:14457 doi:10.1038/srep14457. Rosenzweig, C., Parry, L.M. (1994) Potential impact of climate change on world food supply. Nature, Vol. 360, pp. 133-138. doi: 10.1038/367133a0.
[5] Ortiz, R., Sayre, D.K., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hadoson, D., Dixon, J.M., Ortiz-Monasterio, J.I., Reynolds., M. (2008) Climate change: Can wheat beat the heat? Agriculture, Ecosystems & Environment, Vol. 126, no. 1–2, pp. 46-58. doi: https://doi.org/10.1016/j.agee.2008.01.019.
[6] Lobell, D.B., Schlenker, W., Costa-Roberts, J. (2011) Climate Trends and Global Crop Production Since 1980. Science, Vol. 333. no. 6042, pp. 616-620. doi: 10.1126/science.1204531.
[7] Challinor, A.J., Ewert, F., Arnold, S., Simelton, E & Fraser, E. (2009) Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. Journal of Experimental Botany, Vol. 60, pp.2775-2789. doi: 10.1093/jxb/erp062.
[8] Asseng, S., Ewert, F., Rosenzweig, C., Jones, J.W., J. L. Hatfield, J.L., Ruane, A.C., Boote, K.J., Thorburn, P.J., Rötter, R.P., Cammarano, D., Brisson, N., Basso, B., Martre, P.,Aggarwal, P.K., Angulo, C., Bertuzzi, P.,Biernath, C., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Müller, C., Naresh Kumar, S., Nendel, C., O’Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E.,Ripoche, D., Semenov, M.A.,Shcherbak, I., Steduto, P., C. Stöckle, C., P. Stratonovitch, P., Streck, T., Supit, I., Tao, F., M. Travasso, M., Waha, K., Wallach, D., White, J.W., J. R. Williams, J.R., & Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, Vol.3, pp. 827–832. doi:10.1038/nclimate1916.
[9] Lobell, D.B., Schlenker, W., Costa-Roberts, J. (2011) Climate Trends and Global CropProduction Since 1980. Science, Vol. 333. no. 6042, pp. 616-620. doi: 10.1126/science.1204531.
[10] Olesen, J.E., Trnka, M., Kersebaum, K.C., Skjelvåg, A.O., Peltonen-Sainio, P., Rossi, F., Kozyra, Micale, F. (2011) Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, Vol. 34, no.2, pp.96-112. doi: https://doi.org/10.1016/j.eja.2010.11.003.
[12] Qian, B., De Jong, R., Gameda, S. (2009) Multivariate analysis of water-related agroclimatic factors limiting spring wheat yields on the Canadian prairies. European Journal of Agronomy, Vol.30, pp.140-150.
[26] Ceglar, A., Črepinšek, Z., Kajfež-Bogataj, L., Pogačar, T., 2011. The simulation of phenological development in dynamic crop model: The Bayesian comparison of different methods. European Journal of Agronomy, Vol.151, pp.101-115. doi: https://dx.doi.org/10.1016/j.agrformet.2010.09.007.
[27] Adams, R.M. (1989) Global Climate Change and Agriculture: An Economic Perspective. American Journal of Agricultural Economics, Vol. 71, no. 5, pp. 1272-1279.
[28] Kresovic B., Gordana Matovic, G., Gregoric E., Djuricin S., Bodroza D. (2014) Irrigation as a climate change impact mitigation measure: An agronomic and economic assessment of maize production in Serbia. Agricultural Water Management, Vol. 139, pp.7-16. doi: https://doi.org/10.1016/j.agwat.2014.03.006 .
[29] Malczewski, J. (2004) GIS-based land-use suitability analysis: A critical overview. Progress in Planning, Vol. 62, no.1, pp. 3–65.
[30] Pew, K. L., & Larsen, C. P. S. (2001) GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rain forest of Vancouver Island, Canada. Forest Ecology and Management, Vol.140, no.1, pp. 1–18. https://dx.doi.org/10.1016/S0378-1127(00)00271-1.
[31] Valjarević, A., Srećković-Batoćanin, D., Živković, D., Perić, M. (2015) GIS analysis of dissipation time of landscape in the Devil’s city (Serbia). Acta Montanistica Slovaca, Vol.20, (2), pp. 148–155.
[32] Valjarević, A., Srećković-Batoćanin, D., Valjarević, D., Matović, V. (2018) A GIS-based method for analysis of a better utilization of thermal-mineral springs in the municipality of Kursumlija (Serbia). Renewable and Sustainable Energy Reviews, Vol.92, pp. 948-957. doi: https://doi.org/10.1016/j.rser.2018.05.005. Valjarević, A. (2016), GIS modeling of solar potential in Toplica region. University thought – Publication in Natural Sciences. Vol.6. No.1. pp. 44-48. doi: doi:10.5937/univtho6-10739.
[33] Valjarević, A., Djekić, T., Stevanović, V., Ivanović,R., Jandziković, B. (2018) GIS Numerical and remote sensing analyses of forest changes in the Toplica region for the period of 1953-2013. Applied Geography, Vol.92, pp.131-139. doi: https://doi.org/10.1016/j.apgeog.2018.01.016
[34] Valjarević, A., Vukoičić, D., Valjarević, D.(2017). Evaluation of the tourist potential and natural attractivity of the Lukovska Spa. Tourism Management Perspectives, Vol. 22, pp. 7-16.
[35] Weyant, J., Azar, C., Kainuma, M., Kejun, J., Nakicenovic, N., Shukla, P.R., La Rovere, R., Yohe, G. (2009) Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel (PDF). Geneva, Switzerland: IPCC Secretariat.
[36] Zabel, F., Putzenlechner, B., Mauser, W. (2014) Global Agricultural Land Resources – A High Resolution Suitability Evaluation and Its Perspectives until 2100 under Climate Change Conditions, PLOS ONE 9. e114980.doi: 10.1371/journal.pone.0114980.
[37] New, M., Hulme, M., Jones, P. (2000) Representing Twentieth-Century Space–Time Climate Variability. Part II: Development of 1901–96 Monthly Grids of Terrestrial Surface Climate. Journal of Climate, July, pp. 2217-2238.
[38] Saha, A., Khan, A.S. (2000) Use long-term meteorological data for estimation of irrigation requirement of wheat (Triticum aestivum) at different risk level. Indian Journal of Agricultural Sciences, Vol. 70, pp. 177-180.
[39] Vicuna, S., Maurer, P.E., Joyce, B., Dracup, J.A., Purkey, D. (2007) The Sensitivity of California Water Resources to Climate Change Scenarios. Journal of the American Water Resources Association, Vol. 43, pp. 482-492.doi: 10.1111/j.1752-1688.2007.00038.x.
[40] Ward, F.D. (2007) Modeling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions, Vol. 9, pp.723-735. doi:10.1007/s10530-006-9072-y.
[41] Vacca, A., Loddo, S., Melis, M.T., Funedda, A., Puddu, R., Verona, M., Fanni, S., Fantola, F., Madrau, S. Marrone, V.A., Serra, G., Tore, G., Manca, C., Pasci, S., Puddu, M.R., Schirru, P. (2013) Journal of Environmental Management, Vol. 138, pp. 87-96. doi:https://dx.doi.org/10.1016/j.jenvman.2013.11.018.

valjarevic_zivkovic_a_gis_based_method_of_modeling_the_maximal_resistance_temperatures_of_corn_in_the_territory_of_europe_pp_1030-1039

Connect with us

Association of Economists and Managers of the Balkans – UdEkoM Balkan
179 Ustanicka St, 11000 Belgrade, Serbia

https://www.udekom.org.rs/home

Udekom Balkans is a dynamic non-governmental and non-profit organization, established in 2014 with a mission to foster the growth of scientific knowledge within the Balkan region and beyond. Our primary objectives include advancing the fields of management and economics, as well as providing educational resources to our members and the wider public.

Who We Are: Our members include esteemed university professors from various scientific disciplines, postgraduate students, and experts from ministries, public administrations, private and public enterprises, multinational corporations, associations, and similar organizations.

Building Bridges Together: Over the course of ten years since our establishment, the Association of Economists and Managers of the Balkans has established impactful partnerships with more than 1,000 diverse institutions across the Balkans region and worldwide.

ITEMA conference publications are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.